

DISCLOSURES

• No conflicts of interest to disclose

Exercise of uncertainty A common series of uncertainty A co

MUSC Health MUSC Health GAMMA KNIFE PROGRAM

- 1st GK patient treated January 2010
- 2 physicists, 2 neurosurgeons (1 primary), 4 radiation oncologists (1 primary)
- Source reload August 2014

MUSC Health GAMMA KNIFE PROGRAM

- Over 1500 treatments provided to date
- o 273 in 2016
- Wide range of indications
 - Metastatic disease
 - Surgical cavity
 - Primary malignant brain tumor
 - Acoustic neuroma
 - Meningioma
 - Trigeminal neuralgia
 - AVM
 - Glomus tumor
 - Essential tremor

MUSC Health MUSC Health CALIBRATION AND COMMISSIONING

- Single output measurement required for commissioning!
- No clear guidelines on calibration methodology
- McDonald et al in Med Phys: Calibration of the Gamma Knife Perfexion using TG-21 and the Solid Water Leksell Dosimetry Phantom
 - TG-21 using solid water phantom + A14SL ionization chamber
- Verify Monte-Carlo-based output factors

MUSC Health MEDICAL UNIVERSITY & SOUTH CAROLINA TREATMENT PREPARATION

- Stereotactic frame-based system
- Neurosurgeon positions frame on morning of treatment
- Patient receives:
 - MRI and/or
 - CT and/or
 - Angiogram (AVM only)
- Each imaging modality has dedicated localizer
- At MUSC 90% of patients receive MRI only
- Typical sequences
 - T1 volume scan w/ gado (1mm slice)
 - T2 Drive (0.7mm slice)
 - Time-of-flight (0.7mm slice)

MUSC Health **IMAGING AND LOCALIZATION** Consider inherent MR distortion Gradient non-linearity largest cause • Increases with distance from imaging center Ensure vendor distortion correction is activated o Beware of outside MRs Standard diagnostic QA/PMs may not be sufficient • ACR requires ± 2mm Dedicated phantoms available to help quantify MR distortion • Pictured – Modus Medical Quasar Grid3D™

MUSC Health Medical UNIVERSITY of SOUTH CAROLINA IMAGING AND LOCALIZATION

• Consider registration accuracy

- Kenneth Ulin in Int. Journal of Rad Onc Bio Phys: Results of a Multi-Institutional Benchmark Test for Cranial CT/MR Image Registration
 - Graph result of benchmark study of CT/MRI cranial rigid registration
 - Average error found to be 1.8mm
 - Manual registration found to be more accurate than automatic
- MR distortion affects registration accuracy

MUSC Health MEDICAL UNIVERSITY of SOUTH CAROLINA MAGING AND LOCALIZATION

- Consider GK skull measurement
 - "Bubble measurement" external contour
 - Generated by model
 - Fails to capture extreme/unusual head shapes
 - Fails to accurately represent surface below the cerebellum
 - Historically sufficient for older-model GKs
 - CT-based external contour
 - More accurate
 - Requires day-of-tx CT
 - Can represent surface below the cerebellum
 - Patient anatomy and target location dictate need for CT-based contour

MUSC procedure

- Physicist imports and prepares images for planning
 - Definition of in-frame imagesRegistration of out-of-frame
 - images
 - Creation of external ("skull") contour
- Neurosurgeon reviews registrations, contours tumor volumes and OARs
- Physicist creates treatment plan
- Radiation Oncologist determines prescription, reviews and approves plan

Plans created by placing "shots" Plans created by placing "shots" Each "shot" consists of: Table position Collimator selection Weighting (time) 192 sources divided onto 8 movable plates Each plate can be positioned over the 4, 8, or 16mm collimator, or blocked completely Plates positioned independently (4⁸ possible patterns per shot!) Shead tilt positions (Gamma Angles) available

• 70 (chin back), 90 (neutral), 110 (chin down)

- Patient docked to treatment couch
- Treatment couch moves patient around fixed isocenter to create desired dose distribution
- Source plates simultaneously move 192 Co-60 sources over desired collimators

MUSC Health MEDICAL UNIVERSITY of SOUTH CAROLINA MACHINE SPECIFICATIONS

- Available collimator sizes
 4, 8, 16mm 8 independent source plates
- Radiological accuracy
 - <0.25mm
- Positioning accuracy
 - <0.20mm
- Number of radiation sources
 192
- Total activity at loading
 5100-6300Ci
- Max dose rate (16mm coll) at loading
 >3Gy/min
- Treatment timer accuracy
 - <0.2%
- Couch weight limit
 - 500lbs

MUSC Health QUALITY ASSURANCE

- o Daily QA
 - Focus precision
 - Verification of radiation isocenter vs couch position
 - Automatic routine
 - Diode detector mounted to couch using clinical frame adapter
 - 4mm collimator used
 - 0.1mm tolerance
 - Emergency alarm
 - AV
 - Gamma angle sensor
 - Radiation survey
 - Interlocks (Door, Lt and Rt patient protection, frame docked)
 - Pause, emergency stop, door open
 - Radiation monitor and warning lights

MUSC Health QUALITY ASSURANCE

- o Monthly QA
 - All daily checks +
 - Ion-chamber output check
 - GK solid water phantom
 - o A14SL ion-chamber
 - Timer check

MUSC Health QUALITY ASSURANCE

• Annual QA

- All daily and monthly checks +
- Output factor verification
- Radiation isocenter centricity
 X, Y, and Z directions
- Radiation profile vs baseline for each collimator
- All tests utilize Gafchromic film

Isocenter Centricity Check 16mm

50% Intensity Value:	2900
Left 50% Intensity Position:	0.3048
Left 50% Intensity Value:	2885
Distance to Pin-Prick - Left:	1.32

Use curser to determine position and intensity value on the left side of the profile. Choose the position closest to the calculated 50% intensity value.

tight 50% Intensity Position

 Right 50% Intensity Value:
 2862

 Distance to Pin-Prick - Right:
 1.32

 Use curser to determine position and intensity value on the left side of the profile. Choose the position closest to the calculated 50% intensity value.

Distance Difference:	0.00
Tolerance (cm):	0.05
Pass?:	PASS

MUSC Health TREATMENT UNCERTAINTIES

• Mechanical performance of treatment unit

- Daily verification of radiation iso vs couch position
- Couch position sensors stop tx at >0.1mm deviation
- Plate motion and collimator design minimize opportunity for wear and error
- Positioning accuracy guaranteed through service contract and verified during bi-annual PM
- Novotny et al in Med Phys: Long-term stability of the Leksell Gamma Knife[®] Perfexion[™] patient positioning system (PPS).
 - Measurements collected over 4 years
 - Average deviations 0.1mm or less

- Once images are obtained, frame placement is assumed to be invariant
- Improper frame placement could lead to frame shift which may not be caught prior to treatment
- Experienced neurosurgeon extremely important
 - Frame assembly
 - Frame position
 - Pin entry angle
 - Pin pressure
 - Patient history
- If in doubt re-image!

MUSC Health MUSC Health TREATMENT UNCERTAINTIES

Uncertainty due to image distortion or registration

- MR distortion always present
 - o Increases with distance from imaging isocenter
 - Increased near GK frame
- CT/MR registration introduces error
 - Carefully verify automatic registration results
 - Consider MR distortion during registration
 - Avoid focusing on areas of known MR distortion

MUSC Health GAMMA KNIFE ICON

- Newest Gamma Knife platform
- Perfexion body with added CBCT
- Includes infrared tracking for frameless treatment
- May:
 - Expand GK use to include more fractionated treatments due to frameless tracking
 - Allow for guick verification of frame integrity prior to treatment for traditional patients
 - Track frame integrity throughout treatment with infrared system

- Pappas, E. P., Seimenis, I., Moutsatsos, A., Georgiou, E., Nomikos, P., & Karaiskos, P. (2016). Characterization of system-related geometric distortions in MR images employed in Gamma Knife radiosurgery applications. Physics in *Medicine and Biology*, *61*(19), 6993.
- Novotny Jr, J., Bhatnagar, J. P., Xu, Y., & Huq, M. S. (2014). Long-term stability of the Leksell Gamma Knife® Perfexion™ patient positioning system (**PPS**). *Medical physics*, *41*(3), 031711.

SAM QUESTION 1

- Uncertainty during treatment on the Gamma Knife Perfexion is predominantly due to:
 - Mechanical performance of the treatment machine
 - MLC positioning error
 - Frame integrity and planning image registrations and distortions
 - Machine output fluctuation

SAM QUESTION 1

- Uncertainty during treatment on the Gamma Knife Perfexion is predominantly due to:
 - Frame integrity and planning image registrations and distortions

o References

- Ulin, K., Urie, M. M., & Cherlow, J. M. (2010). Results of a multi-institutional benchmark test for cranial CT/MR image registration. International Journal of Radiation Oncology* Biology* *Physics*, 77(5), 1584-1589.
- Pappas, E. P., Seimenis, I., Moutsatsos, A., Georgiou, E., Nomikos, P., & Karaiskos, P. (2016). Characterization of system-related geometric distortions in MR images employed in Gamma Knife radiosurgery applications. *Physics in Medicine and Biology*, 61(19), 6993.
- Novotny Jr, J., Bhatnagar, J. P., Xu, Y., & Huq, M. S. (2014). Long-term stability of the Leksell Gamma Knife[®] Perfexion[™] patient positioning system (PPS). Medical physics, 41(3), 031711.

SAM QUESTION 2

- MR Distortion Due to the GK Frame Base is:
 - Minimal compared to distortion already inherent in MR imaging
 - Significant adjacent to the frame base, decreasing as distance from the frame base increases
 - Corrected during the localization process
 - Minimal compared to mechanical uncertainty of the treatment unit

